Networking Challenges for the Next Decade

Amin Vahdat keynotes ONS again…

Source: http://events.linuxfoundation.org/sites/events/files/slides/ONS%20Keynote%20Vahdat%202017.pdf

Advertisements

BeyondCorp4 – Migrating (summer2017) Peck et al.pdf – Google Drive

If you’re familiar with the articles about Google’s BeyondCorp network
security model published in ;login: [1-3] over the past two years, you
may be thinking, “That all sounds good, but how does my organization
move from where we are today to a similar model? What do I need to do?
And what’s the potential impact on my company and my employees?” This
article discusses how we moved from our legacy network to the BeyondCorp model—changing the fundamentals of network access—without reducing the company’s productivity.

Source: https://drive.google.com/file/d/0B7Cw2KJ1F2PUYzJCc05EQXlJOVk/view

Google Cloud Platform Blog: Google Compute Engine uses Live Migration technology to service infrastructure without application downtime

What’s remarkable about April 7th, 2014 isn’t what happened that day. It’s what didn’t.

That was the day the Heartbleed bug was revealed, and people around the globe scrambled to patch their systems against this zero-day issue, which came with already-proven exploits. In other public cloud platforms, customers were impacted by rolling restarts due to a requirement to reboot VMs. At Google, we quickly rolled out the fix to all our servers, including those that host Google Compute Engine. And none of you, our customers, noticed. Here’s why.

We introduced transparent maintenance for Google Compute Engine in December 2013, and since then we’ve kept customer VMs up and running as we rolled out software updates, fixed hardware problems, and recovered from some unexpected issues that have arisen. Through a combination of datacenter topology innovations and live migration technology, we now move our customers running VMs out of the way of planned hardware and software maintenance events, so we can keep the infrastructure protected and reliable—without your VMs, applications or workloads noticing that anything happened.

Source: https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html

BeyondCorp – Tiered Access

Traditional security models use a binary, all-or-nothing access model where access is granted solely on the basis of machine, user, and service membership into an authentication authority, such as active directory or LDAP.

Google is taking a different approach and using tiered access as one tool to address these challenges. In contrast to traditional models, tiered access provides more granular control. The level of access given to a single user or a single device may change over time based on device measurements allowing security to set access policy that considers deviations from intended device state.

At Google, the Technical Infrastructure organization manages access for the devices used by more than 61,000 employees while protecting against sophisticated adversaries. Below we outline the model that Google has adopted and continues to evolve as it’s rolled out. The first phase of roll-out has enabled access from mobile devices, while subsequent phases will expand enrollment to cover the entire fleet of Google devices.

Source: https://lp.google-mkto.com/rs/248-TPC-286/images/eBook%202%20-%20Tiered%20Access_v5%20-%20Google%20Cloud%20Branding.pdf

Automatically Inferring Malware Signatures for Anti-Virus Assisted Attacks

Although anti-virus software has significantly evolved over
the last decade, classic signature matching based on byte
patterns is still a prevalent concept for identifying security
threats. Anti-virus signatures are a simple and fast detection
mechanism that can complement more sophisticated analysis
strategies. However, if signatures are not designed with care,
they can turn from a defensive mechanism into an instrument
of attack. In this paper, we present a novel method for
automatically deriving signatures from anti-virus software
and discuss how the extracted signatures can be used to
attack sensible data with the aid of the virus scanner itself.
To this end, we study the practicability of our approach
using four commercial products and exemplary demonstrate
anti-virus assisted attacks in three different scenarios.

Source: https://www.sec.cs.tu-bs.de/pubs/2017-asiaccs.pdf

Research Blog: Federated Learning: Collaborative Machine Learning without Centralized Training Data

Standard machine learning approaches require centralizing the training data on one machine or in a datacenter. And Google has built one of the most secure and robust cloud infrastructures for processing this data to make our services better. Now for models trained from user interaction with mobile devices, we’re introducing an additional approach: Federated Learning.

Federated Learning enables mobile phones to collaboratively learn a shared prediction model while keeping all the training data on device, decoupling the ability to do machine learning from the need to store the data in the cloud. This goes beyond the use of local models that make predictions on mobile devices (like the Mobile Vision API and On-Device Smart Reply) by bringing model training to the device as well.

Source: https://research.googleblog.com/2017/04/federated-learning-collaborative.html?m=1

The Security Architecture of the Chromium Browser

Most current web browsers employ a monolithic architecture
that combines “the user” and “the web” into a single
protection domain. An attacker who exploits an arbitrary
code execution vulnerability in such a browser can steal sensitive
files or install malware. In this paper, we present the
security architecture of Chromium, the open-source browser
upon which Google Chrome is built. Chromium has two
modules in separate protection domains: a browser kernel,
which interacts with the operating system, and a rendering
engine, which runs with restricted privileges in a sandbox.
This architecture helps mitigate high-severity attacks without
sacrificing compatibility with existing web sites. We
define a threat model for browser exploits and evaluate how
the architecture would have mitigated past vulnerabilities.

Source: http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf